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examined in association with 32 proteins measured, 
using a Somalogic platform, previously reported to 
be associated with age. Finally, associations with a 
deficit accumulation index (DAI) based on a count of 
38 health conditions were investigated. All analyses 
were adjusted for age, race, sex, education, smoking, 
hypertension, and diabetes. The AD-PS score was 
significantly associated with all-cause mortality and 
with levels of 9 of the 32 proteins. Growth/differen-
tiation factor 15 (GDF-15) and pleiotrophin remained 
significant after accounting for multiple-testing and 
when restricting the analysis to CN participants. A 
linear regression model showed a significant asso-
ciation between DAI and AD-PS scores overall. 
While the AD-PS scores were created as a measure 
of dementia risk, our analyses suggest that they could 
also be capturing brain aging.

Abstract  Machine learning methods have been 
applied to estimate measures of brain aging from neu-
roimages. However, only rarely have these measures 
been examined in the context of biologic age. Here, 
we investigated associations of an MRI-based meas-
ure of dementia risk, the Alzheimer’s disease pat-
tern similarity (AD-PS) scores, with measures used 
to calculate biological age. Participants were those 
from visit 5 of the Atherosclerosis Risk in Commu-
nities Study with cognitive status adjudication, prot-
eomic data, and AD-PS scores available. The AD-PS 
score estimation is based on previously reported 
machine learning methods. We evaluated associations 
of the AD-PS score with all-cause mortality. Sensi-
tivity analyses using only cognitively normal (CN) 
individuals were performed treating CNS-related 
causes of death as competing risk. AD-PS score was 
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Introduction

The incidence of Alzheimer’s disease (AD) and 
related dementias (ADRD) rises exponentially with 
age. Most etiologic research on ADRD has focused 
on hallmark pathophysiology of β-amyloid (Aβ) 
plaques and neurofibrillary tangles (NFT); yet, 
the role of potentiating age-related brain changes 
is garnering increased attention [1]. In previous 
work, we applied machine learning to structural 
MRIs to develop an index of neuroanatomic risk of 
dementia called Alzheimer’s Disease Pattern Simi-
larity (AD-PS) score [2]. The algorithm behind the 
score captures spatial patterns of gray matter tis-
sue able to discriminate between cognitively nor-
mal (CN) individuals and those classified as having 
dementia. The AD-PS scores have been shown to 
be associated with age, cognitive status, changes in 
cognitive function, incident cognitive impairment 
[3], trajectories of global cognitive function [4], 
and particulate matter air pollution [5, 6]. More 
recently, using data from the Atherosclerosis Risk 
in Communities (ARIC) study cohort, we have 
shown the AD-PS scores to be more predictive of 
incident cognitive impairment than a volumetric 
composite measure composed of regions suscep-
tible to AD [7] (e.g., hippocampus, entorhinal, 
inferior parietal lobule, precuneus). Because the 
AD-PS score is based on spatial patterns of atrophy 
detected by a machine learning algorithm and does 
not directly assess specific brain features (e.g., 
temporal lobe region volumes) or pathologies (e.g., 
Aβ, NFT), we considered that the AD-PS score 
may also be a measure of accelerated brain aging. 
Therefore, AD-PS may be capable of identifying 
brains that are relatively “old” compared to others 
of a similar chronological age.

There is a rapidly growing literature related to 
the assessment of biologic age using a variety of 
markers and strategies including telomere length, 
clinical, laboratory findings, measures of diseases, 
physical disability, cognitive impairment, prot-
eomics, methylation, and metabolomics. Much 
of this effort is driven by the emerging field of 

geroscience, which posits that common biological 
mechanisms of aging play important roles in the 
susceptibility of aged persons to multiple chronic 
diseases [8]. Furthermore, the accumulation of 
biochemical and cellular features of aging may 
reciprocally accelerate underlying mechanisms of 
aging and accelerate development of aged pheno-
types [9]. As such, biomarker development in ger-
oscience is focused on biological pillars of aging, 
molecular and cellular drivers of aging, and accu-
mulated deficits across systems rather than aging 
in any singular organ system [10, 11]. However, 
the strategies coming from the geroscience field 
often do not include any imaging biomarkers and 
particularly not brain imaging despite relevance 
to aging [1, 12, 13]. This is a critical gap because 
brain structural abnormalities are associated with 
physical function and risk for dementia.

From the neuroscience perspective, several groups 
have applied machine learning and artificial intelli-
gence methods to brain images to estimate measures 
of brain aging [14–16]. These estimates are often 
based on structural MRI because it is more avail-
able, less invasive, and cheaper compared to other 
brain imaging modalities such as Positron Emission 
Tomography (PET). Accelerated brain aging calcu-
lated in this fashion has been shown to be associated 
with smoking and alcohol consumption [17] and pro-
gression to AD [18, 19] among other examples.

In this paper, we evaluated the convergent and 
predictive validity of the AD-PS score as a measure 
of biologic age using data from visit 5 of the ARIC 
cohort study. If the AD-PS score were a measure of 
biologic age, we would expect it to (a) be associated 
with non-brain aging biomarkers independent of age 
and (b) predict age-related outcomes independently 
of age. We tested these hypotheses by examining (1) 
cross-sectional associations between AD-PS score 
and 32 blood-based proteomic markers, which have 
previously been identified as being strongly asso-
ciated with age [20], and (2) a deficit accumulation 
index which is the proportion of prevalent health 
deficits queried from health record, functional assess-
ment, and clinical laboratories, etc. Deficit accumula-
tion–based frailty indices are strongly associated with 
mortality outcomes independently of chronological 
age [21]. With respect to predictive validity, we tested 
the hypothesis that AD-PS score was associated with 
all-cause mortality independently of age.
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Methods

The ARIC study conducted the baseline exam from 
1987 to 1989 among 15,792 White and African 
American participants aged 45–64  years who were 
recruited from four field centers located in Forsyth 
County, NC; Jackson, MS; Minneapolis suburbs, 
MN; and Washington County, MD. Using probability 
sampling, each ARIC field center recruited approxi-
mately 4000 individuals from their community. Only 
African Americans were recruited in Jackson, MS; 
the remaining sites reflected local populations, mostly 
White in Minneapolis and Washington County and 
both races in Forsyth County. Due to small sample 
sizes, we additionally excluded African American 
participants from the Minneapolis and Washington 
County centers (N = 8). The Institutional Review 
Boards from all centers approved ARIC protocols; 
participants provided written consent. Our analysis 
included cohort data available through ARIC visit 5 
(occurring between 2011 and 2013) who additionally 
have MRI and cognitive data available (N = 1849).

ARIC data

Cognitive evaluation

The cognitive status (nonimpaired, mild cognitive 
impairment (MCI), or dementia) of participants who 
attended visit 5 was determined using a standardized 
algorithm based on cognitive assessments, verified by 
expert committee review, using information from in-
person cognitive batteries, the Clinical Dementia Rat-
ing scale, and Functional Activities Questionnaires 
completed by participants and/or informants [22].

MRI

The ARIC visit 5 (2011–2013) brain MRI scans 
were performed on four 3  T scanners (Maryland: 
Siemens Verio; North Carolina: Siemens Skyra; 
Minnesota: Siemens Trio; Mississippi: Siemens 
Skyra). The following sequences were obtained: 
localizer, magnetization-prepared rapid gradient-
echo MP-RAGE (1.2-mm slices), axial gradient 
recalled echo T2-weighted imaging (T2*GRE) 
(4-mm slices), axial T2 fluid-attenuated inversion 
recovery (FLAIR) (5-mm slices), field mapping 
(3-mm slices), and axial diffusion tenor images 

(2.7-mm slices for Skyra and Verio scanners and 
3-mm slices for Trio scanner). T2 FLAIR and 
T2*GRE sequences were also collected to assess 
brain lesion burden. The generation of the AD-PS 
scores was based on the T1 weighted MPRAGE 
images. Image processing details have been 
reported previously [7, 23]. A brief description can 
be found in the supplementary materials.

Mortality information

Ascertainment of mortality was based on medical 
records and National Death Index searches. Due to lack 
of access to records at one large Jackson hospital in 2018 
and 2019, we excluded from the final datasets any hos-
pitalizations for Jackson participants for 2018 and 2019; 
thus, the value for the administrative censoring was set to 
be December 31, 2017, for Jackson participants, instead 
of the standard value of December 31, 2019, for partici-
pants from the other three field centers.

Protein measurements

Full details about proteomic data collection and 
processing have been previously reported [24]. 
Briefly, using blood collected at ARIC visit 5, 
the relative concentration of plasma proteins or 
protein complexes was measured using a SOMA 
aptamer-based capture array. This method uses 
short single strands of DNA with chemically 
modified nucleotides, called modified aptamers, 
which act as protein-binding reagents with defined 
three-dimensional structures and unique nucleo-
tide sequences that are identifiable and quantifi-
able using DNA detection technology. The SomaS-
can assay has been described in detail previously, 
as have the assay’s performance characteristics. 
Plasma was collected using a standardized pro-
tocol at each ARIC site, frozen at − 80  °C and 
shipped on dry ice to the ARIC central laboratory 
where it was continuously frozen until aliquoting 
into barcoded microtiter plates with screw-top lids. 
The plates were sent to SomaLogic for quantifica-
tion. In total, 5284 modified aptamers (SOMAm-
ers reagents or “SOMAmers”) were used to meas-
ure relative protein concentration. From those 
5284 proteins, 4877 passed ARIC quality control. 
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For our analyses, we selected the 32 protein panels 
(Table  S2) which have been consistently associ-
ated with chronologic age across several independ-
ent data sets [20]. There were 1500 participants 
with MRI, and proteomic data at visit 5.

Deficit accumulation index

We used 38 measures of physical, cognitive, and 
emotional function; diagnosed diseases; overall 
health; and clinical laboratories to estimate a defi-
cit accumulation index (DAI) [21] (see Table  S3 
in supplementary materials) for data available in 
ARIC at visit 5. For each one of these items, cut-
off values signaling the presence of a deficit in 
a given individual were defined. The index was 
computed as the ratio of variables out of defined 
reference range or health deficits by the total of 
available variables queried for each individual. If 
the participant had more than 20% of the items 
missing, then the index was not computed. For 
our analyses, we had 1644 participants with DAI, 
MRI, and cognitive data available at visit 5.

Estimation of the AD‑PS scores

The overall approach to estimate the ARIC AD-PS 
scores has been previously described in detail [7]. 
Two datasets are involved in the estimation of the 
AD-PS scores utilized in this study. ARIC comprised 
the testing cohort while MRI data from the Alzhei-
mer’s Disease Neuroimaging Initiative (ADNI) was 
used to train machine learning algorithms to generate 
AD-PS scores when provided with MRI data from 
ARIC participants. MRI scans from both ARIC and 
ADNI (Table S1) were aligned to a common template 
(derived from ADNI images) using image process-
ing tools available in the Advanced Normalization 
Tools (ANTs) software package [7, 23] (see supple-
mentary materials). Next, we used high-dimensional 
machine learning methods to estimate the AD-PS 
scores. Details of the machine learning algorithms 
were published previously [2, 5, 23, 25, 26]. Briefly, 
a regularized logistic regression (RLR) classifier was 
estimated in a voxel-wise manner using the gray mat-
ter probability maps from CN and AD participants 
available in the ADNI training dataset. To estimate 
the optimal values of the regularization parameters, 
we combined nested tenfold cross-validations and 

grid search. Once the RLR classifier was estimated, 
the conditional probabilities of a given individual 
having AD-like patterns according to the MRI scan 
were generated using data from ARIC participants 
(testing dataset). The final scores were estimated as 
the mean values of 5 repetitions of the computations, 
to account for variability due to random partitioning 
of cross-validation that occurred during model esti-
mation. We refer to these average probabilities as 
AD-PS scores.

Analyses

To investigate associations of the AD-PS scores 
with mortality, Cox proportional hazards regres-
sion was performed. Participants were stratified 
by tertiles according to AD-PS values. An addi-
tional sensitivity analysis was performed using 
only the CN individuals and treating causes of 
death directly related to the central nervous system 
(CNS) (e.g., strokes, dementia) and not non-CNS 
causes of death as competing risks [27]. To evalu-
ate associations of the AD-PS scores with prot-
eomics, cross-sectional analyses focused on the 
32 proteins reported by Johnson and colleagues 
[20] were performed. We fitted linear regression 
models for each protein at a time using the AD-PS 
scores as the outcome. A Bonferroni correction 
(α < 0.05) for multiple comparisons was applied. 
Finally, we fitted a linear regression model to 
investigate relationships between DAI and the 
AD-PS scores. All analyses were adjusted for age, 
sex, center-race, smoking, hypertension, educa-
tion, and diabetes. The 5-level center-race variable 
(Forsyth-AA, Forsyth-W, Jackson-AA, Minn-W, 
Wash Co-W) was created to accommodate a lack 
of representation of both races in all centers. Anal-
yses were performed using SAS (version 9.4) and 
R (version 4.0.2).

Results

Table  1 describes the basic demographic character-
istics of the ARIC cohort who had AD-PS scores 
available at visit 5 of the study (N = 1849), stratified 
by cognitive status at the time of the visit. In com-
parison with participants classified as having demen-
tia or MCI, the cognitively normal group had lower 
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prevalence of hypertension and was on average 
younger.

All‑cause mortality

There were 347 deaths among 1808 participants 
over 8 years of follow-up after visit 5. The AD-PS 
score was significantly associated (p < 0.001) with 
all-cause mortality (Table  2). Those in the low-
est tertile of the score had a 55% lower all-cause 

mortality rate compared to those in the highest ter-
tile (hazard rate ratio: 0.45; 95% CI: 0.33–0.62). 
The association remained strong when restrict-
ing the sample to only cognitively normal sub-
jects (hazard rate ratio for lowest tertile: 0.59; 
95% CI: 0.39–0.90). When treating CNS causes of 
death as competing risk among the CN individu-
als, the association was significant and the hazard 
rate ratio for the lowest tertile was 0.62; 95%CI: 
0.39–0.98 (see Fig. 1).

Table 1   Characteristics 
of ARIC analytic sample 
by visit 5 cognitive status. 
Age and BMI mean and 
SD values are provided. 
For categorical variables, 
sample size and percentages 
are presented

* Education categories—
Basic is less than completed 
high school, intermediate is 
high school or equivalent, 
and advanced is at least 
some college

Total Cognitive status at visit 5

Normal MCI Dementia

N 1849 1172 589 88
Gender
Female 1119 (60.5%) 747 (63.7%) 320 (54.3%) 52 (59.1%)
Race
Black 538 (29.1%) 378 (32.3%) 130 (22.1%) 30 (34.1%)
Education*

Basic 265 (14.4%) 156 (13.3%) 82 (13.9%) 27 (30.7%)
Intermediate 752 (40.7%) 449 (38.4%) 270 (45.8%) 33 (37.5%)
Advanced 830 (44.9%) 565 (48.3%) 237 (40.2%) 28 (31.8%)
Smoking status
Current 97 (5.3%) 55 (4.8%) 37 (6.4%) 5 (6.0%)
Former 867 (47.7%) 565 (48.8%) 266 (46.3%) 36 (43.4%)
Never 764 (42.1%) 488 (42.1%) 241 (41.9%) 35 (42.2%)
Hypertension
No 449 (24.6%) 301 (25.8%) 131 (22.6%) 17 (20.5%)
Age 76.4 (5.3) 76.0 (5.3) 76.7 (5.2) 79.3 (5.4)
Obesity (yes) 32.4% 32.6% 32.4% 32.2%
BMI 28.5 (5.7) 28.5 (5.7) 28.6 (5.7) 27.7 (5.8)

1849 1172 589 88

Table 2   Survival analyses 
investigating association 
between the AD-PS scores 
and mortality. The analyses 
were adjusted for age, 
sex, race-center, smoking, 
hypertension, education, 
and diabetes status

Survival analysis using all participants with MRI at visit 5 (N = 1808, deaths = 347)

AD-PS score p-value Hazard ratio 95% hazard ratio 
confidence limits

Lowest tertile (best)  < 0.0001 0.45 0.33 0.62
Middle tertile  < 0.0001 0.59 0.45 0.78
Restricting to only cognitively normal participants (N = 1148, deaths = 167)
Lowest tertile (best) 0.014 0.59 0.39 0.90
Middle tertile 0.019 0.64 0.44 0.93
Restricting to cognitively normal and treating CNS-related causes of death as a competing risk 

(N = 1148, deaths = 144, competing events = 23)
Lowest tertile (best) 0.039 0.62 0.39 0.98
Middle tertile 0.045 0.66 0.45 0.99
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Fig. 1   Cumulative hazard of death by tertile of AD-PS scores for cognitively normal participants at visit 5 treating CNS-related 
causes of death as competing risk

Table 3   Age-related proteins that were cross-sectionally 
associated with the AD-PS scores are presented. GDF-15 and 
pleiotrophin remained significant after Bonferroni correction. 
A sensitivity analysis including only cognitively normal par-
ticipants showed significant associations of both proteins with 
the AD-PS scores. Both proteins remained significant after the 

Bonferroni correction in both analyses which is signaled with 
**. Two more proteins signaled with * remained significant 
associated with the AD-PS scores. Analyses were adjusted for 
age, sex, race-center, smoking, education, diabetes, and hyper-
tension

Proteins β SE t p-value

Growth/differentiation factor 15** 0.05 0.01 4.31  < 0.001
Pleiotrophin** 0.07 0.02 3.15  < 0.001
Laminin subunit alpha-2|Laminin subunit gamma-1|Laminin subu-

nit beta-1
0.06 0.02 2.80 0.005

Urokinase plasminogen activator surface receptor* 0.04 0.02 2.67 0.008
Tumor necrosis factor receptor superfamily member 1A 0.04 0.02 2.49 0.013
Macrophage metalloelastase 0.02 0.01 2.07 0.025
Tumor necrosis factor receptor superfamily member 1B 0.03 0.02 2.11 0.035
Hepatocyte growth factor* 0.02 0.01 2.08 0.037
Annexin A1 0.03 0.02 2.24 0.043
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Age related proteins

The cross-sectional association analyses between 
AD-PS scores and age-related proteins revealed the 
AD-PS scores to be significantly associated with 
9 proteins from the above described panel (see 
Table 3). Growth/differentiation factor 15 (GDF-15) 
and pleiotrophin remained significant after Bonfer-
roni correction. Figure  2 presents the boxplots of 
both proteins across AD-PS tertiles. An additional 
analysis based on cognitively normal participants 
showed both proteins remaining significant after 
Bonferroni correction.

Deficit accumulation index

A linear regression model adjusted for age, race-
center, sex, education, smoking, hypertension, and 
diabetes showed a significant association between 
DAI and AD-PS scores (β = 0.06, SE = 0.008, 
p < 0.001). For cognitively normal individuals, 

the association remained significant (β = 0.05, 
SE = 0.01, p < 0.001). The histogram and boxplots 
across AD-PS tertiles of the deficit accumulation 
index are presented in Fig. 3.

Discussion

In this paper, we show that a machine-learning derived 
measure for Alzheimer’s disease risk (AD-PS score) 
based on structural MRI was associated with three 
indicators of biologic age. Specifically, AD-PS was 
associated with all-cause mortality in cognitively nor-
mal persons even after censoring deaths from CNS 
causes; biomarkers of somatic aging, including GDF-
15 and pleiotrophin; and a deficit accumulation index. 
Taken together, these findings suggest the AD-PS score 
may be a brain-based biomarker of organismal aging.

There is great interest in bringing together gero-
science and neuroscience in order to develop a more 
comprehensive framework to understand brain aging 

Fig. 2   The levels of 
GDF-15 and pleiotrophin 
across AD-PS tertiles are 
presented for all individuals 
with MRI and proteomics 
available at visit 5
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disease, physical function, and cognitive function in 
the context of biological aging [1]. While there is an 
increasing body of work based on machine learning 
to estimate chronological age using neuroimaging 
data [14–16, 19, 28, 29], it is less common to see 
these neuroimaging-based measures of brain aging 
being characterized in the context of biological aging. 
Cole and colleagues investigated the associations of 
the gap between chronological age and estimated 
brain age. They found that accelerated brain aging 
was associated with weaker grip strength, poorer lung 
function, slower walking speed, lower fluid intel-
ligence, higher allostatic load, and increased mor-
tality risk [30]. Belsky et  al. devised a biomarker 
called “Pace of Aging” based on tracking declining 
function in 19 biomarkers indexing the cardiovas-
cular, metabolic, renal, immune, dental, and pulmo-
nary systems across ages 26, 32, 38, and 45  years 
[31]. In a more recent iteration of the original Pace 
of Aging biomarkers by Elliot et al. [32], participants 
aged 45  years with faster Pace of Aging had more 

cognitive difficulties and signs of accelerated brain 
aging, including significant reductions of cortical 
thickness, hippocampal volume, increased brain age, 
etc. In a follow-up report [33], they were able to pro-
duce evidence of accelerated brain aging preceded by 
age-related degradation of the body and associated 
with deficit accumulation accelerated by stressors in 
early life. A different approach based on a machine 
learning classifier has been used to create an index 
of advanced brain aging called BA-index [34]. This 
research group investigated associations of the index 
with AD risk factors, finding their index to be asso-
ciated with smoking, anti-hypertensive medication 
use, and waist circumference for a male cohort after 
adjusting for age.

Here, we found the AD-PS scores to be strongly 
associated with all-cause mortality after adjusting for 
age, race, sex, smoking status, education, diabetes, and 
hypertension. The association held after the analyses 
were repeated using only cognitively normal individu-
als and modeling the CNS related causes of death as 

Fig. 3   The histogram of 
the deficit accumulation 
index and its distribution 
across tertiles of AD-PS 
scores is presented
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competing risk. Previously, several groups have inves-
tigated the potential of sMRI-based biomarkers to pre-
dict mortality. Kuller et al. reported white matter grade 
and ventricular volume to be predictors of death [35]. 
Henneman et al. used MRI scans from 1138 patients 
to generate visual rating scales for medial temporal 
lobe atrophy, global cortical atrophy, and white matter 
hyperintensities (WMH). Number of microbleeds and 
presence of infarcts were recorded. They found these 
MRI-derived measures to be predictors of mortality 
[36]. However, no attempt to link these measures to 
the biological aging framework was reported.

Our analyses using proteomics found significant 
associations between the AD-PS scores and 9 pro-
teins from 32 that have consistently been linked to 
mammalian aging. The proteins with stronger asso-
ciations with AD-PS scores (after correction for 
multiple comparisons) were GDF-15 and pleiotro-
phin. GDF-15 has been linked to regulation of obe-
sity, cancer, nervous system disease, metabolism, 
and cardiovascular disease. It has been shown to 
be associated with mortality in different conditions 
[37–41]. Serum GDF-15 levels have been proposed 
as potential diagnostic markers for aging-related 
diseases, such as cognitive impairment, frailty, and 
cardiovascular disease, and more recently has been 
explored as therapeutic target [42–47]. Pleiotro-
phin is another protein that has been widely linked 
to aging [1]. Importantly, pleiotrophin is a secreted 
cell signaling cytokine that is involved in numerous 
biological pathways, including cell growth, differ-
entiation, and proliferation. Pleiotrophin has both 
systemic (e.g., bone, vascular) and brain-related 
actions, including neuromodulation and regulation 
of neuroinflammation [40, 48–50]. Both proteins 
remained significantly associated with the AD-PS 
scores after correction for multiple comparisons 
and sub-setting the analyses to cognitively normal 
individuals. Several studies have investigated asso-
ciations between MRI and proteomics [24, 51, 52] 
in the context of identifying biomarkers for AD 
and not aging. Our results do not necessarily rule 
out the relevance of the other 23 proteins in brain 
aging. We employed a conservative criteria to pro-
tect against Type I errors, and so false negative 
results are possible. Certainly, the findings reported 
here should be replicated, since some aspects of the 
patterns observed may reflect features unique to the 
population included in this analysis.

Finally, we found the AD-PS scores to be signifi-
cantly correlated with the DAI independent of covari-
ates. Kant and colleagues investigated associations 
between frailty, based on the Fried frailty pheno-
type, and MRI features of cerebral small vessel dis-
ease [53], finding that white matter hyperintensity 
volumes were associated with frailty, with similar 
finding reported by Siejka and colleagues who used 
frailty index in a cross-sectional study [54].

Overall, we have gathered evidence of convergent 
and predictive validity of the AD-PS scores as a brain-
based measure of biologic aging based on three dif-
ferent and independent measures of aging selected 
a priori. While the AD-PS scores were created as 
a measure of AD risk by using a machine learning 
algorithm to discriminate between cognitively normal 
individuals and AD patients, our analyses suggest that 
they are also capturing brain aging. Franke and col-
leagues have reported that individuals with dementia 
and ADRDs have accelerated brain age [55]. Simi-
larly, cognitive decline [33] and diagnoses known to 
impair cognitive ability and accelerate aging, includ-
ing schizophrenia and Down syndrome [16], were 
reported to be associated to accelerated aging.

Our work is not without limitations: Participants in 
both ADNI and ARIC are older adults. In particular, 
ages in ARIC vary between 67 and 90. It is unclear 
how the AD-PS scores will perform for younger 
cohorts. The MRI participants were not selected ran-
domly from all V5 participants; thus, caution should 
be taken in generalizing the result. Part of the analyses 
are cross-sectional, implying the possibility of reverse 
causation. The most important limitation is that there 
is no gold-standard measure of biologic aging and so 
we cannot say with confidence that an interpretation 
in this direction is appropriate. The ARIC cohort is 
basically composed of White and African American 
participants. No Hispanic, Asian, or Native American 
individuals were available for our study.

Our study also has important strengths. The ARIC 
cohort is deeply phenotyped with a wealth of bio-
medical information (imaging, omics, cognition, etc.) 
collected over decades. Also, it is a cohort racially 
diverse. We adjusted for multiple comparisons and 
used results from other studies and tested specific 
hypotheses based on these as opposed to a broad non-
hypothesis-based approach. The AD-PS scores are 
based on T1 weighted images, one of the more com-
mon brain imaging modalities across studies. The fact 



	 GeroScience

1 3
Vol:. (1234567890)

that structural MRI is not specific to AD and that the 
AD-PS scores are based on global patterns detected 
by a machine learning algorithm increases their  
potential as a measure of brain aging.

The MRI sequence used to derive the AD-PS 
score is based on a sequence that is commonly used 
clinically. Thus, it is possible that with appropriate 
acquisition protocols and processing, this or similarly 
derived measures might be deployable to clinical set-
tings more quickly than some other kinds of measures 
like blood-based measures of epigenetic modifica-
tions. But, this is just a first step in that direction and 
more work is needed to understand how brain age/
aging is related to aging of the rest of the body.

Conclusion

We have investigated the potential of the AD-PS 
scores, an MRI-based measure of dementia risk, as 
a measure of accelerated aging. The AD-PS scores 
were strongly associated with three different types of 
biological aging measures: (1) all-cause mortality; 
(2) proteins previously linked to aging; and (3) accu-
mulation of deficits which suggests that the AD-PS  
scores could be capturing patterns of brain aging.
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